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Abstract: This research has advanced Quantitative Structure-Property Relationship (QSPR) 
models for predicting the aqueous solubility of drug-like substances. By integrating 
multivariate regression and neural network techniques, the study utilized the backward 
algorithm to strategically select 2D and 3D molecular descriptors, resulting in the development 
of an optimal QSPRMLR model with k = 23. The artificial neural network regression model 
(QSPRANN), derived from selected descriptors of the multivariable linear regression model 
(QSPRMLR), demonstrated enhanced predictive capabilities for logS values in both validation 
and prediction groups, yielding SE values of 0.786 and 0.808, respectively. The QSPRANN 
significantly improved the overall predictability of the multivariate regression model. Statistical 
assessments of the QSPRANN model revealed SE = 0.699, R2train = 0.918, and Q2v = 0.878. 
The predicted logS values from the QSPRANN model align well with experimental data, 
confirming the reliability and accuracy of the developed model. 
Keywords: 2D and 3D descriptor; QSPR model; multivaritate regression; aqueous solubility 
Tóm tắt: Nghiên cứu này đã tiến xa trong việc phát triển mô hình liên quan định lượng - tính 
chất (QSPR) để dự đoán độ hóa tan trong nước của các chất giống như thuốc. Bằng cách tích 
hợp hồi quy đa biến và kỹ thuật mạng nơ-ron nhân tạo, nghiên cứu đã sử dụng thuật toán đảo 
ngược để lựa chọn một cách có chiến lược các chỉ số mô tả phân tử 2D và 3D, dẫn đến việc 
phát triển một mô hình QSPRMLR tối ưu với k = 23. Mô hình hồi quy mạng nơ-ron nhân tạo 
(QSPRANN), xuất phát từ các chỉ số đã được chọn của mô hình hồi quy tuyến tính đa biến 
(QSPRMLR), đã thể hiện khả năng dự đoán nâng cao cho các giá trị logS cả trong nhóm đánh 
giá và nhóm dự đoán, mang lại giá trị SE lần lượt là 0.786 và 0.808. QSPRANN đã cải thiện 
đáng kể khả năng dự đoán tổng thể của mô hình hồi quy đa biến. Các giá trị thống kê đánh giá 
mô hình QSPRANN cho thấy phù hợp SE = 0.699, R2train = 0.918, và Q2v = 0.878. Các giá 
trị logS dự đoán từ mô hình QSPRANN tương thích tốt với dữ liệu thực nghiệm, xác nhận tính 
tin cậy và chính xác của mô hình phát triển. 
Từ khóa: Chỉ số mô tả phân tử 2D và 3D; độ tan hòa nước; hồi quy đa biến; mô hình QSPR 

1. Introduction
The solubility of a chemical compound in
water is a crucial property that can impact
its biological activity and influence its
distribution within the body. In cases
where a chemical compound exhibits
poor solubility, it may play a substantial

role in the failures observed during the 
late stages of drug development [1]. 
Identifying and eliminating potential 
pharmacokinetics with inadequate 
solubility at an early stage are crucial 
aspects of drug discovery and 
development [2]. Hence, it is imperative 
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to identify this stage early on. Ideally, the 
timely elimination of compounds with 
inadequate solubility is necessary and 
should be undertaken predictably before 
initiating drug synthesis [3]. The process 
of prediction relies solely on 
computational techniques and methods 
for predicting solubility. 

In recent years, significant efforts have 
been invested in creating robust 
mathematical models that facilitate the 
rapid prediction of compound aqueous 
solubility, leading to a diverse range of 
published works. Various methods for 
calculating the solubility of valuable 
chemicals have been introduced [4]. 
Multiple application approaches, 
incorporating both linear and nonlinear 
regression, have been effectively 
developed and employed alongside 
diverse structural representations. Despite 
substantial breakthroughs and progress in 
adopting novel modeling approaches, a 
range of methods and descriptions of 
different complexities still coexist [5]. 
The performance methodologies of most 
mathematical models identified in the 
literature remain moderate and encounter 
numerous obstacles in drug synthesis, 
particularly for diverse drug molecular 
structures. 

Various factors contribute to the 
unsatisfactory predictions of compound 
solubility: (a) training data sets lacking 
both drug-like and structurally diverse 
compounds; (b) issues with experimental 
data collections, including high 
experimental error, inconsistent 
procedures for measuring solubility, and 
the use of kinetics instead of equilibrium; 
(c) insufficiently representing the effects
of substances in different states reliably;

(d) confirming solubility models that are
unrelated to pharmacological properties.

A widely debated point is that the 
quality of experimental data stands as the 
primary limiting factor affecting the 
performance of modeling processes 
designed for predicting solubility [3]. To 
address this, a larger quantity of high-
quality solutes may be required. The 
precise experimental data set can be 
established by assessing the consistency 
of results obtained from the predictive 
model, a notion highlighted in various 
works. Collected data should be 
standardized from a single laboratory in 
an initial training set, encompassing 
uniformly defined experiments with 
diverse drug-like structures and known 
intrinsic solubility values. This approach 
can enhance the model's performance, 
creating a more suitable data set for 
predictive model development. 

Recent demonstrations of the 
performance of prediction models have 
come from findings in the aqueous 
solubility challenge. Crafting solubility 
prediction models using a data set 
comprised of uniformly defined 
experimental data remains a task that is 
not inherently simple [2]. Moreover, 
researchers might employ diverse 
modeling techniques across an entire 
solubility dataset. The findings from 
model and data challenges offer a 
distinctive perspective on the 
performance of all models, encompassing 
both linear and nonlinear approaches. 
Interestingly, there are presently no 
universally proven methods, reflecting a 
lack of consensus in the literature 
regarding the efficacy of linear versus 
nonlinear models. Some authors lean 
towards linear models, finding them more 
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interpretable [4]. But some other work has 
shown that nonlinear methods can yield 
better predictability models. 

When considering the predictive 
capabilities of models, inherent 
differences emerge between those derived 
from linear methods and nonlinear 
methods like artificial neural networks 
(ANNs). The utilization of ANN models 
has demonstrated restricted potential for 
the effectiveness of accepted models 
[2,3]. ANN models exhibit lower 
interpretability, often earning them the 
label of "black box" models. In many 
instances, the contribution of individual 
descriptors in a model developed using 
certain ANN algorithms remains 
undisclosed, rendering model 
interpretation more challenging. 

To address this issue with ANN 
models, some authors propose employing 
“local descriptor sensitivity”. This 
involves assigning each descriptor a 
measure of its importance. The concept 
suggests that the sensitivity of models to 
changes in the values of individual 
descriptors should be evaluated 
independently based on specific 
characteristics [2-5]. The model 
represents a segment of the chemical 
space surrounding the studied structure at 
a specific point. Locally determining the 
influence of each descriptor is achievable 
through this approach. Another strategy 
involves enhancing the informability of 
an ANN model, measuring the 
descriptor's significance in elucidating the 
relative influence of each individual 
descriptor. It is recognized that not all 
ANN algorithms are equal. "Black box" 
ANN models can be complemented with 
various types of ANN models that assist 
in data analysis [2]. It is possible to 

discover through component clustering 
evaluation the weight levels 
corresponding to different molecular 
descriptor symbols. 

In this study, we introduce the 
development of robust Quantitative 
Structure-Property Relationship (QSPR) 
models for predicting the solubility of 
drug-like molecules, employing a 
combination of regression and ANN 
techniques. The algorithms were 
automatically searched and adjusted to 
ascertain the relative importance of 
descriptors. The algorithms utilized in 
these QSPR models significantly enhance 
applicability, enabling a detailed 
interpretation of descriptor contributions. 
This proves pivotal in achieving a high 
level of applicability for the QSPR 
models. Furthermore, this QSPR 
modeling technique is well-suited for 
obtaining simpler and faster models. The 
combined approach of regression 
techniques and ANN is demonstrated to 
facilitate a more efficient model by 
explaining and analyzing the factors 
governing aqueous solubility. 
2. Materials and method
2.1. Data set
The dataset utilized in this research was
sourced from the identical ADME
database, encompassing 1290 compounds
that share structural similarities and are
complemented by logS solubility data [6].
The data were acquired using the identical
experimental procedure. In the logS
database, water solubility is denoted in
logS, with S representing solubility at 20-
25°C in mol/L, serving as our foundation
for constructing the model. Tetko's
information was employed in this process,
and the database for this study was
randomly selected from a pool of 902
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chemicals [6]. The SMILES flat-file 
representation of the dataset underwent a 
conversion into an SDF structured data 
file [7]. The solubility measurements 
within the dataset are sourced from 
various literature references, adhering to 
specific criteria: (a) drug-like compounds 
evaluated at room temperature; (b) 
solubility values encompass intrinsic 
solubility values approximately 
equivalent at 25 °C [10]. 
2.2. Molecular descriptors calculation 
and pre-selection 
Every structure was built and 
geometrically optimized utilizing the 
MM+ molecular-mechanic method. 
Subsequently, the semi-empirical PM3 
quantization method was employed to 
optimize the configurations until 
achieving the optimal structures. The 
calculation of all 2D and 3D structural 
molecular descriptors was performed for 
902 molecules [12,13]. The calculated 
molecular descriptors encompass five 
distinct types: geometric structure, 
topology descriptors, electrostatic 
potential descriptors, and 3D spatial 
structure. Additionally, the water-octanol 
partition coefficient (log P) was computed 
as an supplementary descriptor. In total, 
there are 240 molecular descriptions. 

A heuristic technique was employed to 
select the less impactful molecular 
characteristics for elimination. This 
approach has been widely adopted in 
numerous studies for descriptor selection 
and the development of linear models 
[14]. The heuristic approach enables the 
removal of descriptors with missing 
values and/or those exhibiting low or zero 
variance. A descriptor is eliminated if the 
single-parameter correlation coefficient is 
established and found statistically 

insignificant (R2 < 0.1 or F-test value < 
1.0). Descriptor pairs with the highest F-
values are identified as new working sets 
and systematically merged to form three-
parameter correlations. This process is 
iterated until the desired number of 
descriptors is attained. The integrated 
additiveness aligns with closely linked 
descriptors (R2 > 0.8). The sum of 
retained descriptors is determined based 
on the probability p-value of significance, 
resulting in the optimal correlation model. 
The optimal number of input descriptors 
is determined through the selection of 
descriptors from the regression technique, 
evaluated based on correlation values. 
This comprehensive approach is 
elucidated for predicting the solubility of 
compounds during the model search. 
2.3. Data set division 
The dataset is partitioned into training 
sets, validation sets, and test sets 
employing a random sampling technique 
for constructing the QSPR models. The 
original dataset was segmented into a 
70% training set containing 601 
compounds, a 15% validation set 
comprising 150 compounds, and a 15% 
test set consisting of 151 compounds. The 
construction of QSPRANN models relies 
on supervised training, incorporating all 
molecular-input descriptors derived from 
the molecular descriptors screened by the 
regression algorithm [11]. To verify the 
effectiveness of the QSPR models based 
on the evaluation statistical data set 
results. 
2.4. Computational Method 
2.4.1. Standard Least Squares Model 
Standard least-squares modeling is 
executed to generate a model that adheres 
to various standard data models, 
encompassing mixed multiple regression 
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methods [8,9]. Properties of the standard 
least squares model are employed to 
construct linear models for continuous 
response data using the least squares 
method. Visual statistical tools, graphs, 
and surface plots support the results of 
regression analysis. These intuitive 
statistical properties serve to complement 
and facilitate swift model quality 
assessment. The statistical properties also 
enable the optimization of certain effect 
estimates for each descriptor. 
2.4.2. Neural network model 
The neural network model enables the 
creation of models for sets of nonlinear 
data through the utilization of nodes and 
layers. It facilitates the depiction of the 
relationship between input molecular 
descriptors and response variables within 
the dataset [5]. The core of a neural 
network comprises a fully connected 
multilayer perceptron with one or two 
layers. Employing a neural network 
involves predicting one or more response 
variables through an activation function 
applied to the input variables. Neural 
network models excel as predictive 
models when there's no imperative need 
to intricately describe the functional form 
of the response surface [11]. The neural 
network model employs the validation 
method to tailor the dataset, employing 
techniques such as: 
Holdback sampling 
The neural network model is created by 
randomly partitioning the initial dataset 
into training and validation datasets. The 
retained data serves as the training set, 
while the excluded data becomes the 
validation dataset [15,16]. 
K-fold sampling 
This method randomly partitions the 
original data into K smaller datasets. Each 

sub-dataset is used to validate the neural 
network model against the remaining 
data, resulting in the summation of K 
models. The final model obtained exhibits 
the most favorable validation statistics 
[15,16]. 
3. Results and discussion 
3.1. Building QSPRMLR model 
The dataset was gathered from a single 
source to mitigate experimental error in 
logS. We assessed the data distribution 
using the standard Gaussian distribution. 
Test results revealed that the density 
distribution of logS data for drug-like 
substances was concentrated within the 
range of -11.62 to 1.58, as depicted in 
Figure 1. This dataset is well-suited for 
constructing a multivariate regression 
model. To create an effective QSPRMLR 
model, it is imperative to partition the 
dataset into a 70% training set, a 15% 
validation set, and a 15% test set. In this 
scenario, the Agglomerative Hierarchical 
Clustering method is employed to 
generate similar groups of logS based on 
the dendrogram method [11].  

The set of 601 substances is utilized as 
the training set, while the group of 150 
substances constitutes the validation 
group, and the remaining substances form 
the test group. LogS values of substances 
are employed in developing the QSPRMLR 
model, as outlined in Table 1. 

The QSPRMLR models are constructed 
from drug-like substances within the 
training group. Back elimination and 
forward algorithms are applied in the 
modeling process to select molecular 
descriptors from the training dataset, 
encompassing 240 2D and 3D molecular 
descriptors. The number of molecular 
descriptors in the selected QSPRMLR 
models ranges from 1 to 23 molecular 
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descriptors. Table 1 enumerates the most 
crucial 2D and 3D molecular descriptors 
selected, with their statistical 
contributions evaluated based on 
important effects. Numerous 2D and 3D 
descriptors consistently appear in 
QSPRMLR models, highlighting their 
significance. Notably, descriptors such as 
x0, SssCH2, MaxNeg, SsCl, SaaCH, SdS, 
SdsCH, SsI, SsCH3, SsBr, SddssS, SdssS, 
SHBint4_Acnt, SaasC_acnt, SHBint5, 
SsNH2, SdaaN, SssNH, SdsN, 
SsssCH_acnt, SpcPolarizability, SssO, 
SsOH, and SsssN play a crucial role. 
Molecular descriptors x0, SssCH2, 
MaxNeg, SsCl, SaaCH, and SdS exhibit 
high t-ratio values, indicating their 
significance in the models. [13,14]. These 
molecular descriptors could be considered 
the most crucial in the QSPRMLR model. 
The selection of the best QSPRMLR 

model (1) with 23 molecular descriptors 
is based on statistical values such as R2, 
R2

adj, Q2, and standard errors, as outlined 
in Table 1. The QSPRMLR model is 
chosen to construct the QSPRANN model 
with k = 23, representing an optimal 
model. 
logS = -1.109 - 0.270×x1 - 0.235×x2 - 
4.979×x3 - 0.112×x4 - 0.261×x5 - 
0.092×x6 - 0.483×x7 - 0.096×x8 - 
2.004×x9 - 0.103×x10 + 0.433×x11 + 
0.124×x12 + 12.129×x13 + 0.055×x14 + 
0.459×x15 + 0.037×x16 + 0.064×x17 + 
0.099×x18 + 0.040×x19 - 0.015×x20 - 
0.085×x21 - 0.155×x22 - 0.203×x23 - 
0.098×x24 (1) 
With R2 = 0.885; R2

adj = 0.882; Q2 = 
0.835; RMSE = 0.710; Frat = 282.261;   
Fsig = 0.0001; DF = 901; p-values in range 
0.0000 to 0.0063 at the confidence level 
α = 0.05 for the regression coefficients. 

Table 1. The quality of QSPRMLR model and the effects of descriptors are sorted by 
descending 

Term Descriptor 
Parameter Quality Important Effect 

Coeff. Std 
Error t Ratio Prob>|t| Term Log 

Worth Effect 

C Constant -1.109 0.162 -6.850 <.0001    
 

x1 x0 -0.270 0.013 -20.560 <.0001 x1 76.217 

x2 SssCH2 -0.235 0.013 -18.380 <.0001 x2 63.343 

x3 MaxNeg -4.979 0.285 -17.470 <.0001 x3 58.143 

x4 SsCl -0.112 0.007 -16.790 <.0001 x4 54.353 

x5 SaaCH -0.098 0.009 -10.380 <.0001 x24 45.384 

x6 SdS -0.261 0.026 -10.010 <.0001 x5 23.142 

x7 SdsCH -0.092 0.010 -9.390 <.0001 x6 21.673 

x8 SsI -0.483 0.061 -7.940 <.0001 x7 19.292 

x9 SsCH3 -0.096 0.015 -6.420 <.0001 x8 14.219 

x10 SsBr -0.203 0.032 -6.390 <.0001 x23 13.105 

x11 SddssS -0.155 0.032 -4.810 <.0001 x22 11.424 

x12 SdssS -2.004 0.561 -3.580 0.0004 x9 9.665 

x13 SHBint4_Acnt -0.103 0.030 -3.410 0.0007 x10 9.579 

x14 SaasC_acnt -0.085 0.025 -3.390 0.0007 x21 7.036 

x15 SHBint5 -0.015 0.006 -2.740 0.0063 x20 6.274 

x16 SsNH2 0.040 0.013 3.230 0.0013 x19 5.874 
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x17 SdaaN 0.433 0.109 3.980 <.0001 x11 5.753 

 

x18 SssNH 0.099 0.025 4.050 <.0001 x18 4.249 

x19 SdsN 0.064 0.013 4.870 <.0001 x17 4.131 

x20 SsssCH_acnt 0.124 0.025 5.050 <.0001 x12 3.434 

x21 SpcPolarizability 12.129 2.251 5.390 <.0001 x13 3.163 

x22 SssO 0.055 0.008 7.040 <.0001 x14 3.142 

x23 SsOH 0.037 0.005 7.600 <.0001 x16 2.886 

x24 SsssN 0.459 0.030 15.130 <.0001 x15 2.200 

 
Utilizing the optimal QSPRMLR model (1) 
with 23 descriptors, as outlined in Table 
1, enables the determination of the 
significant effects of each descriptor. The 
log worth values provide insights into the 
substantial contributions of individual 
descriptors. The meanings of molecular 
descriptors in Table 1 descripted in 
references [12,14]. 

The cross-validation process 
demonstrates that this constructed model 
can be judiciously applied to predict logS 
values. The QSPRMLR model effectively 
characterizes the training set, showcasing 
statistical significance. The QSPRMLR 
model with k = 23 exhibits robust 
predictability, as evidenced in Table 1 and 
Figure 1, affirming its statistical 
appropriateness. Figure 1 illustrates the 
correlation between experimental and 
calculated logS values derived from the 
QSPRMLR model (k = 23), with molecular 
descriptors arranged by descending effect 
values in Table 1. 

The computation results in Table 1 for 
significant contribution levels of 2D and 

3D molecular descriptors, as presented in 
the QSPRMLR model, distinctly reveal the 
quantitative impact on each drug-like 
structure. This finding holds crucial 
implications for the design of new drug 
molecules with enhanced solubility. The 
standard error SE value [13] can be used 
to validate the predictive results based on 
the prediction results from the QSPR 
model compared with the experimental 
value:  

2

1

ˆ( )
1

N
i i

i

y ySE
N k=

−
=

− −∑                           (2) 

Here yi and ŷi are experimental and 
calculated values logS; N is the number of 
experimental values; k is the number of 
descriptors in the QSPRMLR model.   

The Logworth values of logS are 
influenced by molecular descriptors such 
as x0, SssCH2, MaxNeg, SsCl, SaaCH, 
and SdS, evident from their substantial t-
ratio values. The comparative effects of 
these molecular descriptors are detailed in 
Table 1.
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A B 
Figure 1. The correlation between experimental and calculated logS values derived from the 
QSPRMLR model (k = 23); A) the correlation of training set; B) the correlation of validation set 
3.2. Building QSPRANN model 
Establishing a QSPRANN model involves 
constructing a neural network architecture 
with three layers, as depicted in Figure 2. 
The input layer is equipped with neurons 
corresponding to the number of molecular 
descriptors selected in equation (1). The 
hidden layer encompasses three neurons, 
while the output layer consists of one 
neuron representing the response value 

logS. The transfer function TanH is 
applied to all nodes in the hidden layer, 
and the Sigmoid function is employed 
based on the number of nodes for each 
activation type. The learning rate is set at 
0.1. The network training process entails 
10,000 iterations for both the training set 
with 601 compounds and the validation 
set with 301 substances. 

  
A B 

Figure 2. A) The three-layer neural network model I(23)-HL(3)-O(1); 
B) the influence of molecular descriptors for logS values 

Determining the number of hidden layers 
and the required hidden neurons (m) is 
crucial. To streamline the learning 
process and minimize complexity and 
noise in the neural network, we fashioned 
a neural network model                                    
I(23)-HL(m)-O(1). The quantity of 

neurons (m) on the hidden layer HL(m) 
can be established following the relative 
rule put forth by Huang (2003) [15,16]: 

m = ( 60) / / ( 60)x N N x+ + +       (3) 
Here x output neurons; m the number of 
hidden neurons; N samples were used to 
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train the neural network. In our study, x = 
1, N = 601 training samples account for 
70% of the data set. The number of 
neurons m on the hidden layer determined 

is three neurons. The neural network 
structure I(23)-HL(3)-O(1) was used for 
this study. 

Table 2. The statistical values resulting from the training and validation process of 
the QSPRANN model I(23)-HL(3)-O(1) 

Training results 

 

Validation results 
Measures Value Measures Value 

R2 0.919 Q2
v 0.878 

RASE 0.657 RASE 0.756 
Mean Abs Dev 0.448 Mean Abs Dev 0.548 
-LogLikelihood 535.438 -LogLikelihood 328.615 

SSE 259.267 SSE 171.883 
Sum Freq 601 Sum Freq 301 

Constructing the QSPRANN model 
involves utilizing the 23 molecular 
descriptors from QSPRMLR model (1). 
The neural network architecture I(23)-
HL(3)-O(1) is illustrated in Figure 2A. 
The neurons in the input layer I(23) 
encompass x0, SssCH2, MaxNeg, SsCl, 
SaaCH, SdS, SdsCH, SsI, SsCH3, SsBr, 
SddssS, SdssS, SHBint4_Acnt, 
SaasC_acnt, SHBint5, SsNH2, SdaaN, 
SssNH, SdsN, SsssCH_acnt, 
SpcPolarizability, SssO, SsOH, and 
SsssN. The output layer O(1) consists of a 
neuron representing the solubility value 
logS. The neural network is trained using 
the Holdback method with a holdback 
proportion parameter of 0.3333. 
Employing an error backpropagation 
algorithm, the MAD values for the 
training and validation sets are 0.448 and 
0.548, respectively. 

The QSPRANN model demonstrates 
superior predictability for the validation 
set compared to the QSARMLR model, as 
illustrated in Table 2, Figure 1, and Figure 
3. The predicted logS values from the 
QSPRANN model predominantly fall 

within or close to the 95% confidence 
boundary. Additionally, the correlation 
coefficients for the QSPRANN model stand 
at R2 of 0.919 and Q2 of 0.878, indicating 
high confidence levels in its predictions. 
The QSPRANN model I(23)-HL(3)-O(1) is 
robust in predicting logS values, making 
it applicable for drug-like substances in 
the training, validation, and test sets. 
Specifically, it can reliably predict logS 
values for newly designed anti-SARS-
CoV-2 or anticancer substances, 
outperforming the QSPRMLR model, 
which exhibits higher prediction errors as 
indicated in Table 2. 

In this context, we emphasize the 
significance of drug-like substances in the 
development of diverse novel 
compounds. Current drug design 
strategies, centered on aqueous solubility, 
facilitate the creation of drugs with a 
multitude of activities. To expedite the 
virtual screening process from extensive 
databases, this study employs the 
QSPRMLR and QSPRANN models in 
conjunction with docking simulations to 
predict logS values for potential new anti-
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SARS-CoV-2 drugs. The QSPRANN 
model I(23)-HL(3)-O(1) emerges as a 
valuable tool for predicting logS values 
for these newly designed substances, 

offering efficiency in the drug 
development pipeline. 
  

  
A B 

Figure 3. The predictability of the QSPRANN model for the training and validation set 
As is commonly understood, the 
interaction of a molecule with a protein 
receptor is influenced by its spatial 
configuration. In order to 
comprehensively assess the impact of 
molecular structures, we have effectively 
established a database encompassing both 
2D and 3D molecular descriptors. In some 
previous studies on the development of 
SARS-CoV-2 inhibitors, 2D descriptors 
have been used to develop a 2D-QSAR 
model suggested by V. Kumar et al. 
(2020) [17], T. Bobrowskia et al. (2020) 
[19], and Sk.A Amin et al. (2020) [20]. 
The 2D-QSAR models enable the 
interpretation and rapid prediction of 
SAR-CoV-2 inhibition for a derivative 
through a linear regression model (MLR) 
[17-20]. These 2D-QSAR models have 
shown success in predicting and 
designing nPyridines and nThiophenes 
derivatives that inhibit SARS-CoV [17]. 
The 2D parameters depict the molecule's 
flatness, but molecules can rotate around 
single bonds, introducing 3D structural 

properties. Consequently, this study 
explores a comprehensive set of 
molecular descriptors encompassing both 
2D and 3D aspects. 
4. Conclusion 
We have established a database 
encompassing both 2D and 3D molecular 
descriptors. The 2D-QSAR models 
facilitate the interpretation and rapid 
prediction of SAR-CoV-2 inhibition for a 
derivative through a linear regression 
model, namely QSARMLR. This 2D-
QSAR model has demonstrated success in 
predicting and designing derivatives of 
Pyridines and Thiophenes that inhibit 
SARS-CoV. The findings of this study 
have successfully unveiled a 
comprehensive set of molecular 
descriptors, incorporating both 2D and 3D 
aspects. 

The study employed a backward 
algorithm to strategically select 2D and 
3D molecular descriptors. The artificial 
neural network model (QSPRANN), 
derived from selected molecular 

-12 -10 -8 -6 -4 -2 0 2

-12

-10

-8

-6

-4

-2

0

2

Pr
ed

ic
te

d 
lo

gS

logS
-12 -10 -8 -6 -4 -2 0 2

-12

-10

-8

-6

-4

-2

0

2

V
al

id
at

io
n 

lo
gS

logS

176

Employing artificial neural networks for the assessment of the aqueous solubility of 
drug-like substances



 
 

descriptors of the multivariable linear 
regression model (QSPRMLR), 
demonstrated improved predictive 
capabilities for logS values in both the 
validation and prediction groups. 

Statistical assessments of the QSPRANN 
model indicated that the predicted logS 
values align well with experimental data, 
confirming the reliability and accuracy of 
the developed model..
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